huuhuksinksapaya • huuhuksinksp • Arithmetic*

We will learn to state equations like the following in Nuuchahnulth, using the four basic operations addition, subtraction, multiplication, and division.
(1) C Paqaqḥ ćawaak Puḥłiiš ćawaak.

C ćawaak Puḥhiiš ćawaak Rađiičiđ Piš.
C muu c̉awaaPatu qacc̉iičið?iš.
C qacc̉up̉it muu hayu ?uḥ2iiš Rađiičiđ?iš.

When you need generic words to describe arithmetic and the four operations, use these verbs:
(2) huuhuksinksap BCT, Q huuhuksinksp (vt) (on) \qquad counting it together, doing arithmetic, mathematics גayaRałaỷap BCT, Q גayałaayp* (vi?) (cp) add more onto, addition ?uuš?atap BCT, Q ?uuš?atp (vi?) (cp)..................................... take some off, subtraction جayiiỷap BCT, Q Payiiyp (vt) (cp)... make it many, multiplication xaçḥtaỷap BCT, Q xačḥtaayp* (vt) (cp).................................. divide it, division
We know of no Nuuchahnulth language yet for ordinal numbers apart from 'first' and 'second', fractions apart from 'half', negative numbers, or even, odd, or prime numbers.

Usually, it is convenient to state equations so as to match the order of symbols in our mathematical notation, ex. $2 \times 3=6$. But be aware that the natural word order of Nuuchahnulth puts the predicate first, ex. nupučix Riš. Both orders are acceptable:
(3) C nupučið Riš $3 a \chi$ p̉it qacc̉a. Two times three becomes six.

C \quad a χ p̉it qacc̉a nupučiג 2 iš. Two times three becomes six.

[^0]We use the following words and suffixes for the four operations．Take care to use these appropriately according to their aspect．In the simplest equations，we add the endings directly to numbers，but with very long equations，it is often convenient to use the free words ？ußałačỉ，？ußatu，and so on．Usually we state equations intransitively，but they can also be stated transitively，ex．muu？atap̉i suč̉a ćawiiýap，＇Take four from five and make one．＇


```
-(?)ałačið, -(?)ałaỷap, \}u?ałačið (cp)
-Ratu, -Ratap, ?uPatu (cp)
-pit, -pitap, Rupit (aa) (anaspectual)
-ḥtačì, -ḥtaỷap, Puḥtačið (cp)
L-apu入, L-apup, ?uupu入 (cp)
```

and, plus
so many go onto (screen), are added to
so many fall off, minus
so many times
it divides into so many parts
so many stick up, remains after dividing

To state equations，you will need to know how to use the numbers in the complete aspect，as well as how to add the above suffixes to them．Here are the complete aspect forms of the digits to ten：

 muučỉ N suč̉iičỉ $B C T, Q$ suč̉iič久
 ḥayučỉ BCT，Q ḥayuč̃

Here are the forms of the digits to four plus the five arithmetical endings（BCT）：

（6）	－（？）ałači λ	－3atu	－pit	－ḥtači χ	L－apu χ
	ċawaaPałačið＊	ćawaapatu	nupıit	－	ćaawapu入
	2axaałačix＊	？${ }^{\text {x }}$ aatu	3axpit	RaXhtačix	？aa入apux
	qacc̉aałači入＊	qacçaatu	qacçupit	qacc̉ahtači χ	aacċapux
	muuRałači入＊	muuPatu	muupit	muuḥtači入	m

[^0]: * (CC BY) 2022 Adam Werle, SVLC ms. This information is based on the Taataaqsapa Dictionary, research by John Rampanen, and judgements by Josephine George, Fidelia Haiyupis, Hilda Hanson, Julia Lucas, and Simon Lucas. Speakers of different dialects were consulted separately. This research was supported in part by the Kinkade Language and Culture Fund, and by Ehattesaht-Chinehkint First Nation.

